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Abstract 
This paper proposes a new method, the Strip 

Simulation Method, for computing the electric field on the 
surfaces of conductors for power transmission systems. 
This method can also compute the electric field at any 
observation point in space. The effects of earth surface 
also have been taken into account. The computation results 
have been compared with those obtained using the well 
known successive image theory. The comparison of the 
results obtained for bundles of four conductors show that 
when the ratio of the conductor radius to the distance 
between conductors is greater than 1, the two methods 
give similar results. When it is smaller than 1, the 
Successive Image Method tends to overestimate the 
minimum gradient on the conductor for bundles with more 
than 2 conductors and the proposed method gives accurate 
results. A practical case of a transmission line has been 
studied in this paper. The electric fields on the conductor 
surface and at the earth surface have been computed. In 
this case, the proposed method and the image method give 
consistent results. 
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I. Introduction 

For a long parallel transmission line system, the 
distribution of the electric field on the surface of 
conductors and in space can be treated as a two-
dimensional distribution. Therefore it is possible to use 
two-dimensional methods to compute the electric field. 
The Strip Simulation Method assumes that the charge in 
the conductor gathers on the conductor surface. Each 
conductor surface is equally subdivided into several 
straight and flat strips. The cross section of the conductor 
forms a polygon, which approaches a circle as the number 
of strips increases. The points midway across each strip are 
chosen to be the matching points. The energization 
voltages are applied to these points to compute the charges 

of the strips.  
There are several methods which can be used to 

evaluate the total charges of the strips. In this paper, the 
Markt and Mengele [1] charge evaluation method was 
used to evaluate the total charge of each phase, and then 
accurately compute the distribution of charges among the 
strips according to the principle that all the strips in each 
phase are at the same potential. In each strip, the charge is 
then equally distributed. When computing the electric 
field on the conductor surface, the observation points are 
located on the circumference of the conductor instead of 
on the strips. Once the charge on each strip is known, the 
electric field contributed by the strip on the conductor 
surface or at any observation point above the ground can 
be computed by integrating the contribution of the strip 
and its image; the summation of the field generated by all 
the strips gives the field at the observation point.    

A practical example of a three-phase transmission 
line with two shield wires is studied. In this example, 
each phase consists of a bundle of four conductors. The 
electric fields on the conductor surface and at ground 
level have been computed by both the Strip Simulation 
Method and the successive image method. The 
computation results show that the electric fields computed 
by both methods are in good agreement. In this real case, 
the bundle radius is much larger than the conductor 
radius. 

II. Computation Procedure 
The computation procedure consists of three steps. 

Step 1. Subdivide the conductor surfaces into strips 

In any conductor, the charge must distribute at its 
surface. In order to compute the charge distribution, the 
conductor surface is simulated by a number of infinitely 
long flat strips.  On each strip, the charge is assumed  to 
be equally distributed.  

The strips are of equal width.  Assuming the surface 
of the conductor is subdivided into N strips, the cross 
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section of the conductor is an N-sided polygon.  The width 
S of a strip is 

                     
N

RS πsin2=                               (1) 

where R is the radius of the conductor. 

Fig. 1 shows a conductor which is subdivided into 
six strips. Obviously, the more strips into which the 
conductor is divided, the closer the simulated polygon and 
the real conductor surface will be. 

 

 
 

Fig. 1.  The cross section of a conductor is simulated as a hexagon. 
 

Step 2.  Compute the charge on the strips 

In principle, in order to obtain the charge on each 
strip, the potential coefficient matrix should be found first. 
This matrix contains elements of potential coefficients of 
all the strips in the system. The elements are determined by 
the positions of the strips and their images. The matrix 
equation is then solved to get the charges on each strip. 
This method may need to solve the full matrix, which is a 
large matrix, equation when there are many conductors 
and a large number of strips are simulated. This however 
can be avoided if the conductors are grouped in clusters 
(phases) that are remote from each other as is the case of 
phase bundles of most transmission lines. This is explained 
further in the next paragraph. 

In this paper, the total charge Q BphB of each phase is 
first evaluated using the image method and equivalent 
radius method proposed by Markt and Mengele [1], then 
distributed to each strip. This method only needs to solve a 
smaller potential coefficient matrix for each phase instead 
of solving the full potential coefficient matrix for the 
whole system. 

In order to distribute the charges to the strips, a 
relative potential coefficient matrix [P] is computed for  
strips belonging to the phase. Let a vector [q] represent the 
charges on the strips: [q] is unknown and to be determined. 
[V] is the known vector of energization voltage of the 
phase.  Obviously, all of the elements in vector [V] are the 
same as the voltage of the phase. The relationship between 

[P], [q] and [V] is expressed in the following matrix 
equation 

                                [ ] [ ] [ ]VqP =⋅                              (2)                           

Solving (2) gives the charges on the conductor 
strips. The total charge of the phase is the summation of 
the charges on all the strips belonging to the phase  

                                  ∑= itot qQ                             (3) 

Usually, there is a small difference between Q Bph B and 
Q BtotB. The scaling factor F is defined as 

                                 
tot

ph

Q
Q

F =                                   (4) 

The adjusted charge of the strip is q BiB’ 

                                   ii Fqq ='                                 (5) 

The sum of q BiB’ is equal to Q Bph B. The charge q BiB’ is used 
to compute the electric field. If necessary, the procedure 
can be iterated to adjust the charge. 

Step 3.  Determine the electric field at the surface of the 
conductors 

Once the charges on all the strips are found, the 
electric field on the circumference of the conductors and 
any observation points can be computed by using the 
integration method. In Fig. 2, assuming that there is an 
observation point P located at xB0B, yB0B. For a line charge on 
the strip, its contribution to the field at P is 

                            E q
r

ar=
∆

2 0πε
                    (6) 

 
where r is a vector from the line charge to the point P, ar  
is the unit vector of r, and ∆q is the charge of the line 
with width of du 
                           ∆q du= δ                         (7) 
 
in which δ = q S/  , the per unit charge, S is the width of 
the strip. 
 

 
Fig. 2.  Local coordinates for computing the electric field on the 

conductor surface. 
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In Fig. 2, in the local coordinate system u-o-v, the 

electric field is 
                                E E a E au u v v= +                           (8) 
 
where Eu and Ev are components of electric field parallel 
to the u and v axes, respectively. au  and av  are unit 
vectors of axis u and axis v respectively. For any infinitely 
thin line on the strip, the modulus of the horizontal and 
vertical components of the field in the local coordinate 
system can be calculated as 

                              E
ru =

λ cosΦ  

                              E
rn =

λ sinΦ                            (9) 

 

where λ
πε

=
∆q

2 0

. We transform the observation point x B0 B, yB0B 

in the x-y coordinate system to the local coordinate system 
u-o-v 
 

         
u x x y y
v x x y y
= − + −

= − − + −

( )cos ( )sin
( )sin ( )cos

0 0

0 0

α α
α α

       (10)       

  
where α is the angle between the x-axis and the u-axis. In 
order to take the image of the strip into account, the 
observation point xB0B ,yB0B in the x-y coordinate system 
should also be transformed to the local coordinate system 
u’-o’-v’ 

 

  
u u y v y
v u y v y

s s

s s

' ( sin )cos ( cos )sin
' ( sin )sin ( cos )cos
= + − +
= + + +

2 2 2 2
2 2 2 2

α α α α
α α α α

 

                                                                                 (11) 
Rewrite (11) as 

 

         
u u v y
v u v y

s

s

' cos sin sin
' sin cos cos
= − −

= + +

2 2 2
2 2 2
α α α
α α α

        (12) 

 
The electric field generated by the strip is computed 

by integrating the contribution to P over the width of the 
strip  
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In (13), u Bp B is the width of the strip. The first term is the 

contribution of the strip, the second and third terms are 
contributions from the image. The electric field can be 
represented as 
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The electric field at any observation point can be 
obtained by adding up the contributions from all the 
strips.  

III. Validations and Comparisons 
Let us consider a phase bundle with four 

conductors, as shown in Fig. 3. The center of the bundle 
is located 50 meters above ground. The radii of all 
conductors in the bundle are 1 cm. The bundle is 
energized with a voltage of 1 kV. In the figure, D 
represents the distance between the neighboring 
conductors and R is the radius of the conductor. The 
electric field on the surface of Conductor 1 is computed 
with various ratios of D/R. The number of the strips 
simulated for each conductor is 512, a large number to 
ensure the maximum accuracy. The observation profile is 
placed on the surface of Conductor 1, starting from the 3 
o’clock position on the circumference, running in a 
counterclockwise direction. 

 

 
Fig. 3. Electric field on the surface of Conductor 1, based on the Strip 

Simulation Method; the legend indicates the ratio of distance 
between neighboring conductors vs. the conductor radius.    

  



 

Fig. 3 also shows the computation results from the 
above example. It can be seen that when the D/R ratio is 
less than 20%, the electric field vanishes from 120 degrees 
to 240 degrees. It can be seen that this region is located in 
the area enclosed by four conductors, where the potential 
must be uniform when D is very small. Therefore the 
electric field is close to zero in this area. 

 For comparison purposes, the Successive Image 
Method [2] is also used to study this case. The 
computation results are shown in Fig. 4.  

In Fig. 4, when the D/R ratio is less than 20%, the 
curve oscillates from 100 degrees to 260 degrees. This is 
obviously incorrect because the electric field must be zero 
in an equipotential area. 

Comparing the curves for ratio D/R =100% in Fig. 3 
and Fig. 4, we can see good agreement. Other curves with 
D/R ratio larger than 100% are also consistent. This means 
that when the gaps between the neighboring conductors 
are larger than the conductor radius, both the Strip 
Simulation Method and successive image method give 
similar results. 

 

 
 

Fig. 4. Electric field on the surface of Conductor 1, computed using the 
Successive Image Method. The legend indicates the ratio of 
distance between neighboring conductors vs. the conductor 
radius. 

Looking at the maximum electric fields computed in 
Figs. 3 and 4 (near  0 degrees), one can see that the 
maximum electric field evaluated in Fig. 4 is around 4% 
higher than the one in Fig. 3 for small values of D/R. This 
is mainly due to the fact that the total charge evaluated in 
the case of Fig. 3 (Strip Simulation Method) is made with 
the Markt and Mengele charge evaluation method. This 
method has a tendency to underestimate the total charge 
when D/R is small. The error in the evaluation of the 
charges for D/R = 1% is about 1.6% for the four conductor 
bundles. The electric field computed at ground level will 
have the same difference. 

In order to compare the computation results of 
electric fields at other locations when the ratio D/R is 
greater than 1, a profile is placed on the earth surface, 

immediately below and perpendicular to the conductors, 
extending 50 meters symmetrically on both sides of the 
center line of the conductors. The computation results 
from both methods are shown in Fig. 5 and it can be seen 
that they are in good agreement. 

 
 

Fig. 5. Electric field on ground surface computed using The Strip 
Simulation Method and successive image method 
respectively. 

IV.  A Practical Example 
The Hydro-Quebec second generation 735 kV line 

consisting of a three-phase transmission line with two 
shield wires, is shown in Fig. 6 [3]. Each phase is a 
bundle of four conductors and the shield wire is a single 
conductor. The phase bundles are 27.43 m high and the 
shield wire is 40.23 m high. The conductors in the phase 
bundles are located at the corners of 0.457 m by 0.457 m 
square. The radius of each conductor is 1.53 cm and the 
radius of the ground wire is 0.61 cm. The soil resistivity 
is 100 ohm-meters.  

The phases are at735 kV, phase-to-phase, and the 
phase angles are 0, -120 and 120 degrees, respectively. 
Each conductor is simulated by a 512-sided polygon for 
maximum accuracy. Observation Profile 1 and Profile 2 
are placed at the surface of the left shield wire and of the 
upper rightmost conductor of leftmost phase bundle, 
respectively. Observation Profile 3 is 100 meters long and 
is placed 1 meter above the earth surface, symmetric with 
respect to the transmission line center line.  
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Fig. 6.  The cross section of a 3-phase power line with two shield wires 
and 4-conductor phase bundles. 

          

Fig. 7.  Electric field on the surface of the left shield wire. 

 
Fig. 8.  Electric field on Profile 2. 

Fig. 7 shows that the maximum field on the left 
shield wire occurs at around 270 degrees, beneath the 
shield wire. Fig. 8 shows the maximum gradient on Profile 
2. The maximum field occurs at around 40 degrees, which 
is at the outside of the bundle. The minimum field occurs 
at around 220 degrees, which is near the closest point to 
the center of the bundle. 

 
Fig. 9  Major semi-axis of the ellipse of  the electric field on Profile 3. 

The electric field on Profile 3 is elliptically polarized. 
Fig. 9 shows the major semi-axis of the ellipse (i.e., the 
peak value) of the field along Profile 3. 

V. Conclusion 
Field computations using the Strip Simulation 

Method and the successive image method have been 
carried out for bundled transmission line configurations.  
Comparison of the results obtained for bundles of four 

conductors shows that when the ratio of the distance 
between conductors to the conductor radius is smaller 
than 1, the successive image method tends to overestimate 
the minimum gradient on the conductor for bundles 
having more than 2 conductors. The Strip Simulation 
Method correctly evaluates the distribution of the fields. 
When the ratio of the distance between conductors to the 
conductor radius is larger than 1, both methods give 
accurate results. 
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